
Reminders
• Environment setup due Fri 9/4
• Lab 2 due Mon 9/7
• Formal topic, team, and, sources due Fri 9/11

• Check Teams ‘Announcements’ first so there’s no overlap
• Prior to formal assignment submission, let me know your topic in a few

words to reserve it

• Complete Forms on Teams about joining in-person v. remote next 
week
• I need an accurate headcount to assign groups
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Recall: phases of a translator



Key ideas
• Need specifications of language syntax & semantics that produces 

implementations accepting the same sentences & producing the 
same meaning for them
• Syntax checking during translation is complete

• we can be certain that a sentence is or is not in the language

• Semantic checking is incomplete
• we cannot “check” that a program is “meaningful”

• Need to discuss semantic checking versus specification

• Formally specifying semantics is trickier than syntax
• A language’s type system is the bridge between syntax and 

semantics 
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Type systems
A type system is (1) a mechanism to define types and associate 
language constructs with them, and (2) a set of rules for

• Type equivalence: when are the types of two values the same

• Type compatibility: when can a value of a given type be used in a 
given context

• Type inference: rules that determine the type of a language 
construct based on how it’s used
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Static and dynamic typing
• Recall that types serve an expected set of operations...so to 

determine if a requested operation/operand pairing is legal, we 
need to know the operandʼs type
• Statically typed languages have the constraints that
• a single type is associated with a variable through the 

variable’s lifetime
• the types of all variables and expressions can be determined at 

compile time
• Example: C, C++, Java Haskell…

• Dynamically typed languages allow the type of a variable to 
change as the program runs
• Example: Perl, Python, JavaScript…
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Static typing
• Compile time checking minimizes amount of checking at run time 
• Requires certain information be available at compile time: 

• For each operation we need to know arguments info (number, type, 
order) and result type

• Type associated with a variable at declaration, which may not 
change during the variable's lifetime

• Type inference rules can be used to determine the type of a literal (if 
the language does not require an explicit association)
• Done in conjunction with lexical rules defining how to specify 

literals of the language-supported types: 3 is an integer, 3.0 is a 
real, '3' is a char, and "3.0" is a string
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Static typing – some questions
• Rule 1: declaration before use

• Ex: is a variable declared before it used?
• Rule 2: type compatibility

• Ex: is an expression type-consistent?

• What do you remember is the limitation of RGs and why we need CFGs?

• Does a CFG have the expressive power to determine if a program written 
in a statically typed language is compliant with these two rules?
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No! The semantic analysis phase takes AST as input and annotates 
it with type information that is used to determine if these rules 
have been followed.



Dynamic typing
• Type checking done at run time; requires 

• Type information stored with each data object
• Before each operation, check the types of the operator's arguments
• The result must also be tagged with its type

• Advantages:  
• Promotes flexibility (a variable can change types as necessary during the 

execution of the program) 
• Frees the programmer from most concerns about typing (including type 

declarations)

• Disadvantages: flexibility and freedom come at a cost: 
• Programs become more difficult to debug
• Type information takes up extra space
• Type checking requires execution of extra code, slowing down the 

execution of the program

Semantic Analysis



Specifying dynamic semantics
A dynamic semantics description formally specifies behavioral 
characteristics of the language.

Methods:
• Axiomatic semantics
• Denotational semantics
• Operational semantics
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Axiomatic semantics
• Assertion – a predicate that describes the state of a program at 

any point in its execution
• Precondition – what is true before the statement executes
• Postcondition – what is true after the statement executes

• Axiomatic semantics allows us to logically derive a series of 
assertions by reasoning about the behavior of each individual 
statement in the program
• begin with the program postcondition
• work backwards to the program’s first statement and its precondition

• The result is a proof of program correctness
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Denotational semantics
• More rigorous than the other methods
• Meaning of the language entities is represented by mathematical 

objects (denotations) which can be manipulated in ways that are 
more rigorous (exacting) than we can manipulate language entities 

• For each language entity, define a mathematical object and a 
mapping function that maps instances of the entity onto instances 
of the mathematical object (which is said to denote the meaning 
of its corresponding syntactic entity)
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Operational semantics
• A non-mathematical approach to the specification of the 

semantics of a language
• Provide a definition of program meaning by simulating the 

program’s behavior on a machine model that has a very simple 
instruction set and memory organization (e.g., a stack machine)
• Map each language statement to statements in the machine 

model
• the meaning of those simple statements determines the 

meaning of the language’s statements
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Calculator Language (CL)
• An extension of the Integer Expression Language
• Supports variable declarations and assignments
• Static typing, so recognizes the declaration before use and the 

type compatibility rules
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Abstract syntax
Once parsing is complete, some elements of the input can be 
discarded. Compare the following….

Program à ‘(‘ StmtList ‘)’
StmtList à Stmt |  Stmt ‘,’  StmtList

with

Program à StmtList
StmtList à Stmt |  Stmt StmtList
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Abstract syntax
Syntactic elements that were essential to parsing but have no 
semantic content can be discarded.
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Operational Semantics
• Define an abstract machine (CL Machine Instruction Set)
• Remove unneeded syntactic elements in the grammar
• For each rule in the grammar, define a mapping to CL machine 

instructions using the recursive trans function
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