
Reminders
• Environment setup due Fri 9/4
• Lab 2 due Mon 9/7
• Formal topic, team, and, sources due Fri 9/11

• Check Teams ‘Announcements’ first so there’s no overlap
• Prior to formal assignment submission, let me know your topic in a few

words to reserve it

• Complete Forms on Teams about joining in-person v. remote next
week
• I need an accurate headcount to assign groups

Semantic Analysis

Describing Languages
Semantic Analysis

Semantic Analysis 3

Analysis Synthesis

Syntax Checking
Semantic
Analysis

Lexical
analysis

Syntax
analysis

Intermediate
Code

Generation

Object Code
Optimization

ch
ar

ac
te

r s
tr

ea
m

token stream Syntax
Tree

Intermediate
Code

Symbol
Table

Final
Translated

Form
Source

Program
-creates-

-creates-

-c
re

at
es

-

-c
re

at
es

-

Tokenizer Parser

Object Code
Generator

Semantic
Code Checker

Intermediate
Code Generator

Recall: phases of a translator

Key ideas
• Need specifications of language syntax & semantics that produces

implementations accepting the same sentences & producing the
same meaning for them
• Syntax checking during translation is complete

• we can be certain that a sentence is or is not in the language

• Semantic checking is incomplete
• we cannot “check” that a program is “meaningful”

• Need to discuss semantic checking versus specification

• Formally specifying semantics is trickier than syntax
• A language’s type system is the bridge between syntax and

semantics

Semantic Analysis

Type systems
A type system is (1) a mechanism to define types and associate
language constructs with them, and (2) a set of rules for

• Type equivalence: when are the types of two values the same

• Type compatibility: when can a value of a given type be used in a
given context

• Type inference: rules that determine the type of a language
construct based on how it’s used

Semantic Analysis

Static and dynamic typing
• Recall that types serve an expected set of operations...so to

determine if a requested operation/operand pairing is legal, we
need to know the operandʼs type
• Statically typed languages have the constraints that
• a single type is associated with a variable through the

variable’s lifetime
• the types of all variables and expressions can be determined at

compile time
• Example: C, C++, Java Haskell…

• Dynamically typed languages allow the type of a variable to
change as the program runs
• Example: Perl, Python, JavaScript…

Semantic Analysis

Static typing
• Compile time checking minimizes amount of checking at run time
• Requires certain information be available at compile time:

• For each operation we need to know arguments info (number, type,
order) and result type

• Type associated with a variable at declaration, which may not
change during the variable's lifetime

• Type inference rules can be used to determine the type of a literal (if
the language does not require an explicit association)
• Done in conjunction with lexical rules defining how to specify

literals of the language-supported types: 3 is an integer, 3.0 is a
real, '3' is a char, and "3.0" is a string

Semantic Analysis

Static typing – some questions
• Rule 1: declaration before use

• Ex: is a variable declared before it used?
• Rule 2: type compatibility

• Ex: is an expression type-consistent?

• What do you remember is the limitation of RGs and why we need CFGs?

• Does a CFG have the expressive power to determine if a program written
in a statically typed language is compliant with these two rules?

Semantic Analysis

No! The semantic analysis phase takes AST as input and annotates
it with type information that is used to determine if these rules
have been followed.

Dynamic typing
• Type checking done at run time; requires

• Type information stored with each data object
• Before each operation, check the types of the operator's arguments
• The result must also be tagged with its type

• Advantages:
• Promotes flexibility (a variable can change types as necessary during the

execution of the program)
• Frees the programmer from most concerns about typing (including type

declarations)

• Disadvantages: flexibility and freedom come at a cost:
• Programs become more difficult to debug
• Type information takes up extra space
• Type checking requires execution of extra code, slowing down the

execution of the program

Semantic Analysis

Specifying dynamic semantics
A dynamic semantics description formally specifies behavioral
characteristics of the language.

Methods:
• Axiomatic semantics
• Denotational semantics
• Operational semantics

Semantic Analysis

Axiomatic semantics
• Assertion – a predicate that describes the state of a program at

any point in its execution
• Precondition – what is true before the statement executes
• Postcondition – what is true after the statement executes

• Axiomatic semantics allows us to logically derive a series of
assertions by reasoning about the behavior of each individual
statement in the program
• begin with the program postcondition
• work backwards to the program’s first statement and its precondition

• The result is a proof of program correctness

Semantic Analysis

Denotational semantics
• More rigorous than the other methods
• Meaning of the language entities is represented by mathematical

objects (denotations) which can be manipulated in ways that are
more rigorous (exacting) than we can manipulate language entities

• For each language entity, define a mathematical object and a
mapping function that maps instances of the entity onto instances
of the mathematical object (which is said to denote the meaning
of its corresponding syntactic entity)

Semantic Analysis

Operational semantics
• A non-mathematical approach to the specification of the

semantics of a language
• Provide a definition of program meaning by simulating the

program’s behavior on a machine model that has a very simple
instruction set and memory organization (e.g., a stack machine)
• Map each language statement to statements in the machine

model
• the meaning of those simple statements determines the

meaning of the language’s statements

Semantic Analysis

Calculator Language (CL)
• An extension of the Integer Expression Language
• Supports variable declarations and assignments
• Static typing, so recognizes the declaration before use and the

type compatibility rules

Semantic Analysis

Abstract syntax
Once parsing is complete, some elements of the input can be
discarded. Compare the following….

Program à ‘(‘ StmtList ‘)’
StmtList à Stmt | Stmt ‘,’ StmtList

with

Program à StmtList
StmtList à Stmt | Stmt StmtList

Semantic Analysis

Abstract syntax
Syntactic elements that were essential to parsing but have no
semantic content can be discarded.

Semantic Analysis

Operational Semantics
• Define an abstract machine (CL Machine Instruction Set)
• Remove unneeded syntactic elements in the grammar
• For each rule in the grammar, define a mapping to CL machine

instructions using the recursive trans function

Semantic Analysis

